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SUMMARY

Forced overexpression and/or downregulation of
proteins regulating epithelial-to-mesenchymal tran-
sition (EMT) has been reported to alter metastasis
by changing migration and stem cell capacity of tu-
mor cells. However, these manipulations artificially
keep cells in fixed states, while in vivo cells may
adapt transient and reversible states. Here, we
have tested the existence and role of epithelial-
mesenchymal plasticity in metastasis of mammary
tumors without artificially modifying EMT regulators.
In these tumors, we found by intravital microscopy
that the motile tumor cells have undergone EMT,
while their epithelial counterparts were not migra-
tory. Moreover, we found that epithelial-mesen-
chymal plasticity renders any EMT-induced stem-
ness differences, as reported previously, irrelevant
for metastatic outgrowth, because mesenchymal
cells that arrive at secondary sites convert to the
epithelial state within one or two divisions, thereby
obtaining the same stem cell potential as their arrived
epithelial counterparts. We conclude that epithelial-
mesenchymal plasticity supports migration but addi-
tionally eliminates stemness-enhanced metastatic
outgrowth differences.
INTRODUCTION

Metastatic growth is the major cause of cancer-associated mor-

tality. To successfully grow metastases, epithelial tumor cells

need to acquire invasive properties to disseminate and stem

cell properties to grow new tumors at distant sites (Hanahan

andWeinberg, 2011). Metastasizing cancer cells have been sug-

gested to hijack a developmental program named epithelial-to-
mesenchymal transition (EMT) (Bill and Christofori, 2015; Kalluri

and Weinberg, 2009; Lim and Thiery, 2012). During develop-

mental EMT, cells lose cell-cell contacts and concomitantly

decrease the expression of the epithelial adherens junction

molecule E-cadherin (E-cad) and gain expression of proteins

involved in, e.g., invasion and stemness (Kalluri and Weinberg,

2009; Lim and Thiery, 2012; Thiery and Sleeman, 2006).

The effect of EMT on stemness, as well as the role and even

the very existence of EMT during metastasis, are heavily

debated (Del PozoMartin et al., 2015; Fischer et al., 2015; Zheng

et al., 2015). For example, contradicting findings were published

on the stem cell potential of tumor cells with an epithelial or

mesenchymal state. Some studies found that EMT-inducing

transcription factors, such as Twist, coincide with the acquisition

of stem cell properties, thereby supporting metastatic growth

(Mani et al., 2008; Morel et al., 2008; Wellner et al., 2009; Yang

et al., 2004). Other studies found that a forced reversion to an

epithelial state through Twist knockdown leads to metastasis-

initiating abilities (Ocaña et al., 2012; Tsai et al., 2012). Impor-

tantly, both experimental approaches may not represent the

true in vivo status of cells because they require gene manipula-

tions that artificially force cells into fixed states, while in vivo cells

may be able to transiently and reversibly switch between states,

a process that from here on is referred to as epithelial-mesen-

chymal plasticity. Moreover, the non-physiological overexpres-

sion or complete loss of EMT-regulators, such as Twist1, may

induce expression profiles and subsequently stem cell pheno-

types that do not exist under physiological conditions. Finally,

EMT regulators can have oncogenic functions independently

of their ability to induce EMT, thus observed phenotypes that

result from gene manipulation may not be exclusively due to

EMT induction (Beck et al., 2015). These data and concerns illus-

trate the importance of studying EMT in non-manipulated in vivo

settings.

Although EMT would best be studied in the physiological

in vivo settings, non-experimentally induced EMT during metas-

tasis has yet to be observed. For example, extensive histological

examination of human invasive ductal mammary carcinomas
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Figure 1. Development of a Fluorescent Mouse Model for Metastatic E-cad-Positive Invasive Ductal Carcinomas

(A) Human invasive ductal carcinoma (upper) and a late-stage MMTV-PyMT tumor (lower), stained for E-cad and counterstained with H&E. Scale bar, 30 mm.

(B) Schematic representation of the fluorescent mouse model in which all tumor cells express YFP and in which the endogenous E-cad is labeled with CFP. The

western blot shows wild-type and CFP-tagged E-cad.

(C) Multi-photon images of fluorescent PyMT mammary tumors. Scale bars, 30 mm.
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shows that, even in tumors that havemetastasized, tumor cells in

the primary tumor, as well as the metastases, display an epithe-

lial phenotype (e.g., Bukholm et al., 2000; Jeschke et al., 2007;

Kowalski et al., 2003). This means that either EMT does not exist

when it is not experimentally induced or EMT remains unde-

tected in these static images because only a small population

of cells temporarily adapts a mesenchymal state. Therefore, in

addition to the development of models in which EMT can occur

without modifying EMT-regulators, techniques are required that

are able to reveal and study the potentially rare and undetectable

pool of cells going through EMT.

Here, we combine high-resolution intravital imaging, single-

cell sequencing, and transplantation techniques to investigate

the role of EMT and epithelial-mesenchymal plasticity in

metastasis of invasive ductal carcinomas. Our data suggest

that epithelial-mesenchymal plasticity supports tumor cell

migration and causes metastasis-enhancing stem cell capacity
2 Cell Reports 14, 1–8, March 15, 2016 ª2016 The Authors
differences between epithelial and mesenchymal states to be

irrelevant.

RESULTS AND DISCUSSION

To determine whether EMT occurswithout artificial induction, we

used polyomavirus middle T antigen (PyMT) mice that develop

ductal mammary carcinomas that recapitulate the progression

of human mammary adenoma to late carcinoma stages and

metastasize primarily to lymph nodes, lungs, and, occasionally,

liver (Guy et al., 1992; Lin et al., 2003; Welm et al., 2007). Similar

to human ductal carcinomas, these mammary tumors highly ex-

press E-cad, even in the late carcinoma stage and metastases

(Figure 1A). To visualize EMT in vivo, we crossed these MMTV-

PyMT mice with MMTV-Cre and R26R-loxP-stop-loxP-YFP

(R26R-YFP) mice (Srinivas et al., 2001) to specifically label all tu-

mor cells with yellow fluorescent protein (YFP). Next, we crossed



Figure 2. Rare E-cadLO Cells Isolated from Mouse Invasive Ductal Carcinomas Have Undergone EMT

(A) Western blot of indicated samples. n = 3 mice.

(B) Scatterplot showing expression values for E-cadHI and E-cadLO cells. Red dots that are encircled in red represent genes that are significantly upregulated in

E-cadLO cells (q value < 0.01).

(C) The relative mRNA expression of EMT-related genes determined by RNA sequencing (RNA-seq) and RT. n = 4 mice, except for ZEB1, where n = 3 mice.

(D) T-distributed stochastic neighbor embedding (t-SNE) plot. Using unsupervised K-medoids clustering, two separate clusters were identified indicated as

squares and triangles that overlap with E-cadHI (blue) and E-cadLO (red) tumor cells.

(E) t-SNE intensity plot for genes differentially upregulated in (B).

Related to Figures S1, S2, and S3 and Table S1.
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these animals with E-cad-mCFP mice in which a monomeric

cyan fluorescent protein (mCFP) is fused to endogenous E-cad

(Snippert et al., 2010), in order to label all endogenous E-cad

with mCFP (Figure 1B). The resultant MMTV-PyMT; MMTV-

Cre; R26R-YFP; E-cad-mCFP animals develop ductal mammary

tumors and metastases in which all tumor cells are YFP-labeled

and endogenous E-cad is tagged with mCFP (Figure 1C). Micro-

scopic inspection (Figure 1C) and flow cytometry (Figure S1)

of these fluorescent tumors showed that the vast majority of

cells appear to have high levels of membrane-localized E-cad

(E-cadHI cells).

To test whether these tumors also contain a population

of tumor cells that have undergone EMT in which E-cad is not

functional by either downregulation of the expression or by

decreasing membrane-localized E-cad, we dissociated fluores-

cent PyMT tumors and exposed the extracellular domain of

E-cad to a fluorescently labeled antibody. We sorted YFP-ex-

pressing tumor cells, excluding, for example, lymphocytes (see

Figure S1). In contrast to analysis of histological images, careful

analysis of the flow cytometry data showed that in addition to the

population of E-cadHI tumor cells another, much smaller popula-

tion of tumor cells could be found. In this population the expres-

sion of E-cad-mCFP was low and/or E-cad was non-functional
due to intracellular localization as determined by low extracel-

lular antibody staining (E-cadLO; Figure S1B). Western blot anal-

ysis confirmed that E-cadLO cells have low levels of E-CAD and

a concomitant upregulation of VIMENTIN (Figure 2A), which

is consistent with mesenchymal characteristics (Kalluri and

Weinberg, 2009). Moreover, using mRNA deep sequencing, we

observed differential expression in the E-cadHI and E-cadLO cells

of typical EMT genes, such as Vimentin, Fibronectin, and N-cad-

herin, and transcription factors that regulate EMT, including

Snail, Slug, Twist, ZEB1, and ZEB2, referred to as the E-cadLO

gene set (Figures 2B and 2C; Table S1). These results were

confirmed by qPCR (Figures 2C and S2A).

These data show that in our system E-cad status can be used

to distinguish between epithelial and mesenchymal phenotypes

on the population level. To test whether this holds true at the sin-

gle-cell level, we performed single-cell mRNA sequencing of 72

E-cadHI and 25 E-cadLO cells. When performing unsupervised

K-medoids clustering of the individual expression profiles, two

separate clusters were identified that overlapped with the

E-cadHI and E-cadLO cells (Figure 2D; p < 1�8). The single

E-cadLO cells had higher expression of the E-cadLO gene set

from the bulk sequencing data, confirming the mesenchymal

identity of the E-cadLO cells on the single-cell level (Figure 2E;
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Figure 3. E-cadLO Cells Are Similar to Human Mesenchymal Tumor Cells

(A) From a published dataset (Onder et al., 2008), the expression level in human mammary epithelial cells (HMLE) of the human orthologs of the mouse E-cadLO

gene set in Figure 2B was retrieved. Differential expression levels per gene as the deviation of the median across all experiments are shown.

(B) The image shows an E-cad+ human invasive ductal carcinoma, and the graph shows the percentage of E-cadHI and E-cadLO cells (n = 4 tumors). Scale bar,

20 mm.

(C) FrompublishedRNA-seq experiments of human breast cancer CTCs (Yu et al., 2013), the relative expression levels of human-mouse orthologs were retrieved.

Plots show the average differential expression found in the Yu et al. (2013) dataset for the E-cadLO-upregulated (red bars) or non-upregulated genes (black bars).

Expression levels for circulating cells were determined for blood draws from ten healthy donors (left two bars), four blood draws from one patient with CTCs with

an epithelial phenotype (middle two bars), and one of the same patient with CTCs with a mesenchymal phenotype (right two bars).
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t test p < 1�4; Figures S2B and S2C). Furthermore, E-cadLO and

E-cadHI cells clustered separately in a heatmap (Figure S2D),

and we observed that the expression profiles of E-cadHI cells

were more similar to each other (Pearson correlation of 0.45)

than to the profiles of E-cadLO cells (Pearson correlation of

0.35, Wilcoxon two-sided test = p < 10�15; Figures 2D and

S2D). Collectively, these data show that in PyMT tumors at the

single-cell level that E-cad status can be used to discriminate

between cells with epithelial and mesenchymal features.

Next, we tested whether human tumors also contain E-cadLO

cells. As a first indication, we found that the E-cadLO gene set

(marked with red dots in Figure 2B) is upregulated in human cells

in which EMT is induced upon E-cad knockdown or expression

of dominant-negative E-cad (Onder et al., 2008) (Figure 3A, p <

0.0001 hypergeometric test). Next, we obtained tumors directly

after patients underwent mastectomy and selected four tumors

that stained positive for E-cad on histological sections (Fig-

ure 3B). We dissociated the tumors into single cells, stained

the cells with DAPI to exclude apoptotic cells, EpCAM to select

for tumor cells (Yu et al., 2013), and E-cad to distinguish between

E-cadHI and E-cadLO cells. By flow cytometry we indeed

detected both E-cadHI and E-cadLO cells (Figure 3B). To test

whether human E-cadLO and mouse E-cadLO cells are similar,
4 Cell Reports 14, 1–8, March 15, 2016 ª2016 The Authors
we used a recently published dataset of gene expression in

epithelial- and mesenchymal-circulating tumor cells (CTCs)

from breast cancer patients (Yu et al., 2013). Importantly, the

mouse E-cadLO gene set was also upregulated in the human

mesenchymal CTCs, but not in the human epithelial CTCs

or in healthy blood specimens (Figure 3C). Combined, these

results show that we have identified a subpopulation of mouse

tumor cells (E-cadLO) that is similar to that of human mesen-

chymal CTCs.

Since tumors are genetically very heterogeneous, the E-cadLO

CTCs from breast cancer patients and from our mouse model

may either adapt a permanent mesenchymal state by, e.g.,

mutations in EMT-regulators, or represent a transient reversible

mesenchymal state. To test whether the mesenchymal state is

reversible, we first generated organoids from the MMTV-PyMT;

MMTV-Cre; R26R-YFP; E-cad-mCFP carcinomas. We stimu-

lated these organoids with transforming growth factor beta

(TGF-beta) and hepatocyte growth factor (HGF) and indeed

observed an increase in the number of E-cadLO cells (Fig-

ure S3A), showing that the mesenchymal state of E-cadLO cells

can be stimulated. This state can also be lost, since orthotopic

transplantation of E-cadLO cells always resulted in mammary

tumors containing tumor cells with a predominantly epithelial



Figure 4. Behavioral Characterization of

Rare E-cadLO Tumor Cells in Mouse Mam-

mary Carcinomas that Highly Express E-cad

(A) Cartoon of the experimental setup.

(B and C) Intravital images of PyMT tumors

containing non-motile (B) and migratory (C) tumor

cells. The rectangular box highlights migrating

E-cadLO cells. Scale bars, 50 mm.

(D) The percentage of protruding (left) and motile

cells (right) plotted against E-cad status. Red lines

indicate the median. The graph represents data

from imaging fields with moving cells (11 out of

45 imaging fields from four mice, where symbols

represent different mice).

Related to Figure S4 and Movies S1 and S2.
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phenotype as indicated by E-cad expression (Figure S3B). This

reversibility is not necessarily dependent on cell division, since

sorted E-cadLO cells plated into a 3D matrix and stained with a
Cell Reports 14,
CellTracker dye to visualize cell division,

reverted to an epithelial state both before

(Figure S3C, upper) and after cell division

(Figure S3C, lower). Combined, these re-

sults show that the mesenchymal state of

E-cadLO cells is plastic and can be gained

and lost by tumor cells.

Similar to previously identified invasive

signatures of tumor cells (Wang et al.,

2004, 2007), many categories of E-cadLO

gene set were related to tissue develop-

ment, morphogenesis, migration, and

adhesion (Figures S3D–S3F). This result

prompted us to visualize the behavior of

these E-cadHI and E-cadLO tumor cells

in vivo using multi-photon microscopy.

To exclude YFP expression in non-

epithelial lineages, tumors were imaged

that developed upon transplantation of

E-cadHI tumor cells into the mammary

glands of wild-type mice (Figure 4A). In

addition to endogenous mCFP-labeled

E-cad and YFP, we visualized type I

collagen by imaging the second harmonic

generation signal. As reported previously

(Wyckoff et al., 2007), we found that the

migratory behavior of tumor cells in these

genetic PyMT tumors is very heteroge-

neous: while no migratory cells were

found in the majority of imaging fields

(Figure 4B; Movie S1), we found many

migratory cells in some imaging fields

(Figure 4C; Movie S2; in Figure S4A we

demonstrate that cell motility is not due

to Z-drift of the focal plane). The tumor

cells migrated either individually or as

streams in which single cells appeared

to follow each other’s migration path (Fig-

ure 4C), as has been demonstrated
before in other tumor models (Patsialou et al., 2013; Roussos

et al., 2011), but collective migration of cohesive epithelial clus-

ters was not observed in this model. While on average E-cadHI
1–8, March 15, 2016 ª2016 The Authors 5



Figure 5. Epithelial-Mesenchymal Plasticity Renders Potential Stem

Cell Differences Irrelevant for Metastatic Outgrowth

(A) The percentage of E-cadLO- and E-cadHI-circulating tumor cells. n = 13

mice.
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cells were non-motile, the rare E-cadLO cells were either protrud-

ing or displayingmigratory behavior (Figure 4D). Thesemigratory

E-cadLO cells do not relate to the CK14-positive cells (Figures

S4B and S4C) that lead collective migration in organoids

(Cheung et al., 2013). Collectively, our data show that E-cadLO

cells represent a rare population of motile cells that have under-

gone spontaneous EMT without experimental induction, within

otherwise non-motile epithelial tumors.

Sincewe found that the small population ofmigratory cells in tu-

mors has undergone EMT, we questioned whether these tumor

cells enter the circulation in this mesenchymal state only or

whether they can revert and/or enter in an epithelial state. Despite

a large variationbetweenmice regarding the total numberofCTCs

and the percentage of E-cadHI and E-cadLO CTCs, both types of

CTCs were present in the blood of tumor-bearing MMTV-PyMT

mice (Figure 5A). Next, we testedwhether the E-cadLO-circulating

tumor cells show the same expression profile as the E-cadLO

tumor cells in the primary tumor. We performed single-

cell sequencing and observed that the circulating E-cadLO and

E-cadHI cells cluster into two populations and that the circulating

E-cadLO cells show the same expression profile as the primary

E-cadLO tumor cells (Figures S5A and S5B). Since in this mouse

model tumor cells do not stay long enough in the circulation to

switch to another state (99.99% of IV-injected tumor cells get

cleared fromcirculationwithin30s [FigureS5C]),wecanconclude

from our data that disseminating tumor cells that enter the circu-

lation are in a mesenchymal, but also an epithelial, state.

Next, we investigated the epithelial and mesenchymal state of

endogenous spontaneousmetastases to the lung. In line with the

percentages of E-cadHI and E-cadLO cells in the blood, 40% of

single metastasized tumor cells appeared to be E-cadHI cells,

and 60% were E-cadLO cells (Figures 5B and 5C). In contrast

to findings in prior studies in which EMT was induced (Stoletov

et al., 2010), our data suggest that naturally occurring EMT

does not influence the arrival and extravasation of the CTCs at

the site of metastatic outgrowth. To investigate the cells that

grow out to metastases, we examined endogenous metastases

with a size of two andmore than three cells. Although 20% of the

two-cell micrometastases were E-cad negative, all metastases

larger than three cells were E-cad positive (Figures 5C and 5D).

Since our histological analysis shows that all metastases

larger than three cells contain E-cadHI cells, we hypothesized

that either only E-cadHI cells are able to grow metastases or

E-cadLO cells convert to an epithelial state during the first cell

divisions. Interestingly, E-cadHI and E-cadLO cells do not differ

in their proliferative capacity (Figures S5D and S5E). To further
(B) Representative images of single E-cadLO and E-cadHI cells and a multi-

cellular metastasis in the lung. White rectangle highlights single cells. Scale

bars, 20 mm.

(C) Percentages of E-cadLO and E-cadHI tumor cells in blood and lungs. Blood:

n = 13 mice; lungs: n = 143 metastases in 16 mice.

(D) Representative images of liver metastases grown from E-cadHI cells (left)

and E-cadLO cells (right). Scale bars, 40 mm.

(E) Table indicating the metastatic outgrowth potential of E-cadLO and E-cadHI

cells. Tumor-initiating cell frequency as tested by the Elda-limiting dilution test:

E-cadHI cells 1/21,228; E-cadLO cells 1/17,545, p = 0.82.

Related to Figure S5.
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test the impact of each state, and especially epithelial-mesen-

chymal plasticity, on metastatic potential, we investigated the

ability of E-cadHI and E-cadLO cells to initiate liver metastases.

In contrast to previous reports with fixed states (Fantozzi et al.,

2014; Ocaña et al., 2012; Shibue and Weinberg, 2009, 2011;

Tsai et al., 2012), the potential to grow metastases from plastic

E-cadHI cells and E-cadLO cells is approximately equal (Fig-

ure 5E). The outgrowth of epithelial metastases from the E-cadLO

cells strongly suggest that at least a significant fraction of the

spontaneous metastases as found in Figure 5B are grown from

mesenchymal E-cadLO cells that have converted to an epithelial

state during the first few cell divisions. Considering all these data

together, we conclude that, although intrinsically epithelial and

mesenchymal cells may differ in their stem cell potential, this dif-

ference does not provide a large metastatic outgrowth advan-

tage asmesenchymal cells adapt an epithelial state after the first

few cell divisions, thereby abolishing any potential initial differ-

ences in stem cell properties.

Collectively, our data provide evidence for theexistenceofEMT

in vivo without experimentally altering EMT-inducers. Artificial

interference of EMT regulators does not reflect themoderate fluc-

tuations of expression levels that occurs under physiological con-

ditions and therefore is likely to lead tomoreextremephenotypes.

Moreover, these manipulations artificially keep cells in fixed

states, whereas we here show that cells adapt transient and

reversible states.Ourdata support thenotion that temporal acqui-

sition of themesenchymal state is important formigration, but not

for entering the circulation. We observed that mesenchymal cells

that arriveat thesecondarysite adaptanepithelial stateafter a few

cell divisions. These cells therefore acquire the same stemness

properties as their epithelial counterparts. Thus, due to epithe-

lial-mesenchymal plasticity, anydifferences in stemnessbetween

epithelial andmesenchymal states will be lost and become irrele-

vant for metastatic outgrowth. In conclusion, we have demon-

strated plasticity between epithelial and mesenchymal states,

thereby rulingouta critical role fordifferential stemnesscapacities

and ultimately the potential to grow metastases.

EXPERIMENTAL PROCEDURES

Mice

All experiments were carried out in accordance with the guidelines of the

Animal Welfare Committee of the Royal Netherlands Academy of Arts and Sci-

ences, the Netherlands. For more details, see the Supplemental Experimental

Procedures.

Human Material

Human tissues were obtained in compliance with Dutch law that does not

require informed consent when leftover materials are used anonymously.

Flow Cytometry on Mouse Material

After putting cells through a 70-mm strainer cap (BD Falcon), cells were sorted

on a fluorescence-activated cell sorting AriaII special-ordered research prod-

uct (BD Biosciences). The sort strategy is illustrated in Figure S1B. For more

details, see the Supplemental Experimental Procedures.

Intravital Imaging

Imaging was performed on an inverted Leica TCS SP5 AOBSmulti-photon mi-

croscope with a chameleon Ti:Sapphire pumped Optical Parametric Oscillator

(Coherent). For more details, see the Supplemental Experimental Procedures.
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